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Hamiltonian formalism for charged-particle systems interacting with absorptive dielectrics

A. Tip*
FOM Instituut voor Atoom en Molecuulfysica AMOLF, Kruislaan 407, Amsterdam, The Netherlands

~Received 1 August 2003; published 12 January 2004!

We use the auxiliary field method to obtain a quantized Hamilton formalism for charged particles interacting
with absorptive dielectrics. We give various equivalent representations. For absorptive dielectrics extending
over all space, such as absorptive photonic crystals, our formalism is equivalent to that of Dunget al. @Phys.
Rev. A 65, 043813~2002!#. We also show that, as for nonabsorptive photonic crystals, to leading order the
excited states of embedded two-level atoms do not decay radiatively if their transition frequencies are in a band
gap.
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I. INTRODUCTION

A. General

Interactions between atoms or molecules are usually
vided into two categories, Coulomb and radiative ones.
many situations only one of the two has to be taken i
account. In scattering situations, Coulomb interactio
~supplemented with spin interactions if needed! suffice,
whereas in an opposite case, such as superradiant sys
Coulomb interactions are usually neglected and only the
teraction through the radiation field is considered. But th
exist situations where both can be important. This is the c
with the transfer of energy between particles such as ato
molecules, or nanostructures at fixed positions in a ba
ground filled with an, in general absorptive, dielectric, t
subject studied here.

For vacuum or other homogeneous nonabsorptive die
trics and using the Coulomb gauge, the transfer proce
can be separated into radiative ones~photon emission and
reabsorption! and electrostatic ones, determined by Coulo
interactions. The latter are often subdivided into Dexter@1#
processes, relevant for particles at small distances, and¨r-
ster processes@2,3#, where the particles are at a larger d
tance. See Ref.@1# for a discussion of the various nonradi
tive processes encountered in practice.

Consider a typical situation with identical atoms at fix
positions in a homogeneous background with one initia
excited and the others in their ground states. Then the exc
atom can decay radiatively or transfer its energy to ano
one ~resonant energy transfer!. If only a finite number is
present, we are dealing with a large molecule with fix
nuclei. Generically this molecule is not in an~excited! eigen-
state. In this situation radiative and Fo¨rster processes are of
different nature. Radiative decay is possible and a defi
decay rate exists. But if only Fo¨rster processes take place t
state of the system shows an oscillating behavior in time
a rate does not exist. This changes for an infinite numbe
particles, randomly distributed in an otherwise spatially h
mogeneous medium. Then a hopping~random walk! model
for the energy transfer is often employed. For a discussio
its properties, see Refs.@4,5#. But, as far as the author i
aware, it has never been derived starting from a Schro¨dinger
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or Liouville–von Neumann description.
Note that the separation into radiative and nonradiat

processes is rather arbitrary. If one changes the gauge fo
electromagnetic potentials, the division becomes different
the extreme case of the Weyl or temporal gauge, all inter
tions become radiative in the sense that they are all de
mined by the vector potential. Neglecting contact intera
tions this is also true for the multipolar representation.

Recently Dunget al. considered the situation for an ab
sorptive dielectric@6–8#. Their formalism is initially setup
for dielectrics extending over all space. Different configu
tions are handled by a limiting procedure at the end o
calculation. Among other matters these authors investiga
resonant energy transfer between two embedded atoms.

Here we take a somewhat different point of view, usi
the auxiliary field formalism developed by the author@9#. It
does not require the dielectric to extend over all space
involves the use of a generalized Coulomb gauge, resul
in a splitting into nonradiative and radiative interactions th
is close to the conventional one in the Coulomb gauge. T
the scalar potential obeys a Poisson equation featuring
static permeability«stat(x). This may not be a convenien
starting point for high-frequency processes such as reso
energy transfer. Thus we consider different, unitarily equi
lent, Hamiltonians, which are better suited. In particular,
retrieve the Hamiltonian used by Dunget al. @6# for dielec-
trics extending over all space. For an example involvi
resonant energy transfer considered earlier by the above
thors we confirm their result, which indicates that their lim
iting procedure is compatible with the present setup.

We recall that photonic crystals are special dielectr
with a spatial periodicity in«(x,v),

«~x,v!5«~x1nkak ,v!, nkPZ, ~1.1!

where theak’s, the lattice vectors, are linearly independe
Depending on their number, we are dealing with one-, tw
or three-dimensional photonic crystals. In the conserva
case, where«5«(x) is frequency independent, the radiativ
mode spectrum is given by the spectrum of the Helmho
operator which can have gaps, the photonic band gaps.
cited embedded atoms with transition frequencyv0 in the
gap no longer decay radiatively, simply because there are
field modes present to carry away the excitation energy
fact their excited states remain stable bound states. Num
©2004 The American Physical Society04-1
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cal work @10# shows that gaps can still exist for dispersiv
nonabsorptive media, but if absorption is present, the si
tion changes, gaps do not exist in frequency intervals w
Im «(x,v)Þ0. For a detailed analysis, based upon the a
iliary field formalism, we refer to Ref.@11#. But in intervals
on which Im«(x,v)50 gaps can still exist, again inhibitin
radiative decay. But, as discussed in the sequel, it is fa
complicated to show that excited atomic states remain sta

In setting up a tractable theoretical description for a g
eral absorptive dielectric with embedded particles a num
of initial assumptions must be made.

Assumption 1. The system contains particles at fixed p
sitions~Born-Oppenheimer approximation! such as atoms o
molecules, which we assume optically small, i.e., for rad
tive processes we can evaluate the vector potential at
nuclear or center-of-mass coordinates~long-wavelength ap-
proximation!.

Assumption 2. The background consists of a linear,
general absorptive and spatially inhomogeneous, dielec
where the real and imaginary parts of the frequen
dependent electric permeability«(x,v) are connected by a
Kramers-Kronig relation~causality!. The macroscopic Max-
well’s equations are assumed to be valid, thus«(x,v) is a
given quantity.

Assumption 3. A perennial matter is the choice of the fie
in which the particles are placed. Does the dielectric ext
into a particle or not? We assume that it does not. Given
macroscopic description, this seems the only logical cho
the alternative breaking down on an atomic scale. Keep
the particles isolated from the dielectric resolves this
lemma. For rare-earth atoms~often used in optoelectroni
devices! with an active inner shell electron this seems re
sonable. Note that the associated excluded volume effect
automatically taken care of by the corresponding bound
conditions in the determination of the eigenmodes of
Helmholtz equation. No separate calculations of fields
empty spheres surrounded by a dielectric are required.

B. Maxwell’s equations

A proper treatment requires a Hamiltonian formalism
which both particles and electromagnetic fields are qu
tized. It is only recently that a general quantization meth
was developed for absorptive dielectrics. At present two g
eral methods are available. The first consists of adding
appropriate quantum Langevin noise term to the vacu
quantized Maxwell’s equations@12,13#, whereas the second
developed by the author@9#, starts on a classical level b
introducing auxiliary fields, thus restoring energy conser
tion and making quantization possible@14#. The two methods
have been shown to be equivalent@15#. Here we use the
second method and shall consider a number of equiva
Hamiltonians.

Let us first introduce Maxwell’s equations for the case
hand. Starting point is the set of macroscopic, classi
Maxwell’s equations for an isotropic, linear, absorptive
electric. Thus, setting«05m05c51 andH5B, we have

] tD~x,t !5]x3B~x,t !2J~x,t !,
01380
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] tB~x,t !52]x3E~x,t !,

]x•D~x,t !5r„x,t), ]x•B~x,t0!50,

D~x,t !5E~x,t !1P~x,t !,

P~x,t !5E
t0

t

dsx~x,t2s!E~x,s!, ~1.2!

with t0 some initial time which can be taken ast052`. We
also assumex(x,0)50 ~no initial current surges!. The charge
and current densitiesr(x,t) andJ(x,t) are due to the charge
~massmn , chargeen , and positionxn) constituting embed-
ded atoms or molecules,

r~x,t !5(
n

end„x2xn~ t !…,

J~x,t !5(
n

enẋnd„x2xn~ t !…. ~1.3!

As usual we now express the fields in terms of the vector
scalar potentials

E~x,t !52] tA~x,t !2]xF~x,t !,

B~x,t !5]x3A~x,t !. ~1.4!

In view of the convolutive relation betweenP and E, it is
convenient to switch to their Fourier transforms. With t
space and frequency dependent, complex electric perme
ity ~permittivity, dielectric function! «(x,z) given by

«~x,z!511x̂~x,z!,

x̂~x,z!5E
0

`

dt exp@ izt#x~x,t !, Imz>0, ~1.5!

we obtain, denoting Fourier transforms by a tilde,

$v2«~x,v!2h0%Ã~x,v!1 iv«~x,v!]xF̃~x,v!52 J̃~x,v!,

p•«~x,v!pF̃~x,v!1 iv]x$«~x,v!Ã~x,v!%5 r̃~x,v!.
~1.6!

Here, withU the unit 333 matrix andea5a/a, a5uau,

h05p2U2pp5p2Dp5]x3~]x3••• !,

p52 i ]x , Dp5U2epep . ~1.7!

Note thatPi5epep projects upon the longitudinal compone
fi andP'5Dp upon the transverse componentf' of a three-
dimensional vector fieldf. In the sequel we denote byp22

the inverse of2]x
2 , so 2]x

2p2251.
In the vacuum case,«(x,v)5«051, and in the Coulomb

gauge,]xA50, the first equation leads to an Helmhol
equation forÃ, not involving F̃(x,v), whereas the secon
equation reduces to the Poisson equation. But in our si
4-2
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tion, adopting the Coulomb gauge, the vector and scalar
tentials remain coupled. Instead of the Coulomb gauge
can set

]x•$«~x,v!Ã~x,v!%50, ~1.8!

thus obtaining the Poisson equation

2]x•$«~x,v!]xF̃~x,v!%5p•«~x,v!pF̃~x,v!5 r̃~x,v!.

~1.9!

Eliminating F̃ we then obtain

$v2«~x,v!2h0Ã~x,v!%

52 J̃~x,v!1v«~x,v!p@p•«~x,v!p‡21r̃~x,v!,

~1.10!

which is still quite complicated. Even accepting this, it is n
clear that a Lagrange-Hamilton formalism can be fou
where the vacuum Coulomb potentials are replaced by
aboveF̃, obeying Eq.~1.9!. But in the auxiliary field for-
malism @9# these problems are overcome. After quantizat
various unitary transformations lead to different represen
tions, the main subject of this work. Inner products are
noted as (f ,g)5^gu f &, infinite self-energies appearing i
various summations are dismissed.

II. THE AUXILIARY FIELD FORMALISM

In this section we briefly present the essentials of the a
iliary field formalism, at the same time introducing the no
tion employed in the sequel. Usingx(x,0)50 and introduc-
ing the Fourier transformn(x,l) of x8(x,t) we have

x~x,t !5E dln~x,l!l21sinlt, x~x,0!50,

x8~x,t !5E dln~x,l!coslt, x8~x,0!5E dln~x,l!,

x̂~x,z!5z21E dl@l2z#21n~x,l!

5E dl@l22z2#21n~x,l!,

x̂~x,0!5E dll22n~x,l!,

«~x,l!511x̂~x,l1 i0!,

Im «~x,l!5Im x̂~x,l1 i0!5
p

l
n~x,l!,

«stat~x![«~x,0!511x̂stat~x!511x̂~x,0!

511E dll22n~x,l!,
01380
o-
e

t
d
e

n
-
-

x-
-

n~x,l!5p21E
0

`

dt cosltx8~x,t !, n~x,0!50. ~2.1!

We now set F1(x,t)5E(x,t), F3(x,t)5B(x,t), n(x,l)
5s(x,l)2, s>0, and introduce

F2~x,l,t !52s~x,l!E
t0

t

dssinl~ t2s!F1~x,s!,

F4~x,l,t !52s~x,l!E
t0

t

dscosl~ t2s!F1~x,s!. ~2.2!

Note thats(x,l) andF2,4(x,l,t) vanish outside the dielec
tric material and thatE(x,t) is transverse in this region. Now

] tF1~x,t !5]x3F3~x,t !1E dls~x,l!F4~x,l,t !2J~x,t !,

] tF2~x,l,t !5lF4~x,l,t !,

] tF3~x,t !52]x3F1~x,t !,

] tF4~x,l,t !52s~x,l!F1~x,t !2lF2~x,l,t !, ~2.3!

or, in compact form,

] tF~x,t !5NF~x,t !2G~x,t !, ~2.4!

where

G1~x,t !5J~x,t !, G2,3,4~x,t !50. ~2.5!

As discussed earlier@9,11#, Eq. ~2.4! with the initial condi-
tions

F2~x,l,t0!5F4~x,l,t0!50, ~2.6!

is equivalent to the original set of Maxwell’s equations. T
operator

N5S 0 Nem

Nme 0 D ,

Nem5S ]x3 ^s~x,l!u

0 l
D ,

Nme5S 2]x3 0

2s~x,l!0 2l
D , ~2.7!

where^s(x,l)u5*dls(x,l) . . . , hasblock structure and

N252S He 0

0 Hm
D , ~2.8!

where

He5S h01x8~x,0! ^ls~x,l!u

ls~x,l! l2 D . ~2.9!
4-3
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We note thatN is anti-self-adjoint,N* 52N, in the real
Hilbert space

H5 % j 51
4 Hj , H15H35L2~R3,dx;R3!,

H25H45L2~R3,dx;R3! ^ L2~R,dl!, ~2.10!

with inner product

~ f,g!5(
j 51

4

~ f j ,gj ! j . ~2.11!

For details, see Refs.@9,11#. We shall occasionally write for
fPH,

f5S fe

fm
D , ~2.12!

where fePHe5H1% H2 with inner product (fe ,ge)e and fm
PHm5H3% H4 with inner product (fm ,gm)m . Next we de-
termine the projectorP upon the null spaceN(N) of N. The
conditionN* f50 gives

f5Mf, M5S Me

Mm
D , f5S we~x!

wm~x!
D ,
ue

s

01380
Me5S ]x 0

2
s~x,l!

l
]x 0D , Mm5S 0 ]x

0 0 D , ~2.13!

wherewe,m(x) are scalar functions. Now

M* 5S 2]x ]xK s~x,l!

l U 0 0

0 0 2]x 0
D ~2.14!

and

M* M5S p«stat~x!p 0

0 p2D . ~2.15!

Then

P5M~M* M!21M* 5S Pe 0

0 Pm
D 512Q, ~2.16!

where
Pe512Qe5S p
1

p•«stat~x!p
p p

1

p•«stat~x!p
pK s~x,l!

l U
s~x,l!

l
p

1

p•«stat~x!p
p

s~x,l!

l
p

1

p•«stat~x!p
pK s~x,l!

l U D ,

Pm5S Pi 0

0 0D . ~2.17!
be

er
III. LAGRANGE-HAMILTON FORMALISM
IN THE C GAUGE

We assume that the charge and current densities are d
charged particles~massmn and chargeen),

r~x!5(
n

end~x2xn!, J~x!5(
n

enẋnd~x2xn!.

~3.1!

Next we introduce potentials@9,14#

Fe52] tj2Mz, Fm52Nmej, ~3.2!

which is a generalization of the situation in the vacuum ca
Clearly

F152] tj12]xz, F35]x3j1 , ~3.3!

so we identifyj1 with the vector potentialA andz with the
scalar potentialF. From Eq.~2.4!,
to

e.

] t
2j1M] tz52Hej1Ge . ~3.4!

This equation of motion and that for the particles can
retrieved by Hamilton’s principle from the Lagrangian

L5
1

2
~] tj1Mz,] tj1Mz!2

1

2
~Hej,j!1(

n

1

2
mnẋn

2

1~Ge ,j!2~r,z!0 , ~3.5!

where we dropped the subscripte in (f,g)e and (f,c)0 the
inner product onL2(R3,dx). As in the vacuum caseL does
not contain] tz and we have to fix a specific gauge in ord
to arrive at a Hamilton formalism. Thus we setPej50, or

]x•H j1~x!2E dl
s~x,l!

l
j2~x,l!J 50. ~3.6!
4-4
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Note thatA(x)5j1(x) is transverse forx outside the dielec-
tric material. ApplyingM* 5M* Pe to Eq. ~3.4! and noting
that PeHe50, we obtain

M* M] tz5M* G52]xJ5] tr, ~3.7!

so

2]x«stat~x!]xz5r, ~3.8!

a Poisson equation featuring«stat(x). Since nowj'Mz we
have

L5
1

2
~] tj,] tj!1

1

2
~M* Mz,z!2

1

2
~Hej,j!1(

n

1

2
mnẋn

2

1~Ge ,j!2~r,z!0 . ~3.9!

The canonical momenta are

p5
dL

dj
5] tj, pn5

]L

] ẋn

5mnẋn1enj1~xn!, ~3.10!

and the Hamiltonian becomes~note that bothp andj are in
QeHe)

H5~p,] tj!1(
n

pnẋn2L

5
1

2
~p,p!1

1

2
~Hej,j!1(

n

1

2mn
@pn2enj1~xn!#21Vstat

5
1

2
~Qep,p!1

1

2
~Hej,j!1(

n

1

2mn
@pn2enj1~xn!#2

1Vstat , ~3.11!

where

Vstat5
1
2 ~r,z! ~3.12!

with z satisfying Eq.~3.8!.

IV. QUANTIZATION

We discussed the quantization procedure earlier in R
@9# and here we only give a brief summary. From now o
wards we use the complexified forms of the various Hilb
spaces introduced earlier. Withf and g test functions from
QeHe the basic commutation relations are

@j~ f!,p~g!#5 iRe~ f,g!, f,gPQeHe . ~4.1!

Next let $umbum>0% be the set of eigenfunctions ofQeHe ,

Heumb5m2umb . ~4.2!

Then, in terms of the boson creation and annihilation ope
tors a(umb) and a* (umb), acting in the Fock spaceF
5F(He), which satisfy, see Ref.@9#,

@a~g!,a* ~ f!#5Re~ f,g!, f,gPQeHe , ~4.3!
01380
f.
-
t

a-

j~ f!5(
b

E dm@2m#21/2$a* ~umb!~ f,umb!1a~umb!

3~umb ,f!%,

p~ f!5 i(
b

E dm@m/2#1/2$a* ~umb!~ f,umb!2a~umb!

3~umb ,f!%, ~4.4!

and, since now

H f5(
b

E dmma* ~umb!a~umb!, ~4.5!

we have, writingj15A,

H5H f1(
n

1

2mn
@pn2enA~xn!#21Vstat . ~4.6!

However, the static potential does not always exist. Inde
for the Drude model«(v)512V2v21(v1 ig)21, leading
to an infiniteVstat . This can be remedied by switching to
different HamiltonianH8, using an appropriate unitary trans
formationU. Hence

H85UHU21, ~4.7!

where we take

U5exp@2 i j~W!# ~4.8!

with

W5S W1

0 D , W1~x!5]xz0~x!,

z0~x!5(
n

en

4pux2xnu
, 2]x

2z0~x!5r~x!. ~4.9!

ThusW15PiW1 andU5exp@2i(W1 ,A)1#. The coordinates
are not affected by the transformation, but

pn85UpnU215pn1enAi~xn!,

p85UpU215p1QeW. ~4.10!

Noting thatp5Qep we have

U~p,p!U215~Qe$p1W%,p1W!

5~Qep,p!1~QeW,W!12~W,Qep!

5~p,p!12VCoul22Vstat12~W,p!.

~4.11!

Here we used
4-5
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~QeW,W!5~W,W!2~PeW,W!5~W1 ,W1!1

2~p@p•«statp#21p•W1 ,W1!1

5~]xz0 ,]xz0!12~@p•«statp#21]x
2z0 ,]x

2z0!1

5~r,z0!12~@p•«statp#21r,r!1

52VCoul22Vstat , ~4.12!

where

VCoul5
1

2
~r,z0!15

1

2 (
mÞn

emen

4puxm2xnu
. ~4.13!

Thus

H85H f1~W,p!1(
n

1

2mn
@pn2enA'~xn!#21VCoul .

~4.14!

Note that (W,p) depends on

p1
i 52Ei2]xz, ~4.15!

which does not equalDi as is the case in simpler situation
In changing to the primed system we also have to transf
the statesc according to

c85Uc. ~4.16!

Thus, if c is of the formc5wm^ wvac , wherewm is a state
of the material subsystem andwvac the field vacuum state
then

c85Uwm^ wvac5wm^ Uwvac , ~4.17!

which now contains contributions from all Fock layers a
vice versa.

V. A REPRESENTATION IN TERMS OF FREE FIELDS
AND WAVE OPERATORS

We now turn to a formulation which features the fr
electromagnetic and auxiliary fields. InHe we define

H05S h0 0

0 l2D , Q0512P05S P' 0

0 1D . ~5.1!

Then the wave operators

V65 lim
t→6`

exp@ iHet#exp@2 iH0t#Q0 ~5.2!

exist under certain conditions, see Appendix A. Special ca
are a finite dielectric in vacuum and certain absorptive
electrics extending over all space, in particular photo
crystals. The wave operators have the properties

He5V6H0V6* , V6V6* 5Qe , V6* V65Q0 ,
~5.3!

and the eigenvectors ofHe andH0 are related according to
01380
m

es
i-
c

umb5Vumb
(0) , umb

(0)5V* umb . ~5.4!

In the following we chooseV5V2 . Next we defineVF on
F through

VFw5w (0)
% Vw (1)

% $Vw1
(2)

^ Vw2
(2)%sym% •••, ~5.5!

for wPF of the form

w5w (0)
% w (1)

% $w1
(2)

^ w2
(2)%sym% •••. ~5.6!

Let now

Ĥ5VF* H8VF , â~ f!5VF* a~ f!VF ,

â* ~ f!5VF* a* ~ f!VF . ~5.7!

Then, from its action in Fock space,

VF* a* ~umb!VF5a* ~V* umb!5a* ~umb
(0)!, ~5.8!

leading to

VF* j~ f!VF5j(0)~V* f!, VF* p~ f!VF5p(0)~V* f!,
~5.9!

where

j(0)~ f!5(
b

E dm@2m#21/2

3$a* ~umb
(0)!~ f,umb

(0)!1a~umb
(0)!~umb

(0) ,f!%,

p(0)~ f!5 i(
b

E dm@m/2#1/2

3$a* ~umb
(0)!~ f,umb

(0)!2a~umb
(0)!~umb

(0) ,f!%.

~5.10!

Thus we obtain

Ĥ f5(
b

E dmma* ~umb
(0)!a~umb

(0)!

5H f
(0)5Hem

(0)1Haux
(0) ,

VF* p~W!VF5p(0)~V* W!,

Â'~xn!5VF* A'~xn!VF

5(
b

E dm@2m#21/2

3$a* ~umb
(0)!ūmb1

' ~xn!1a~umb
(0)!umb1

' ~xn!%,

~5.11!

so
4-6
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Ĥ5Hem
(0)1Haux

(0) 1p(0)~V* W!

1(
n

1

2mn
@pn2enÂ'~xn!#21VCoul . ~5.12!

We note that all interactions with the dielectric are stored
the wave operatorV. If we set V equal to 1, then
p(0)(V* W)→p(0)(W)50 sinceW15]xz0 is longitudinal
and theumb1

(0) ’s are transverse. ThenĤ reduces to the sum o
its vacuum counterpart andHaux

(0) . Finally we note that the

states transform according toĉ5VF* c8 and in particular

ĉ5VF* wm^ wvac5wm^ wvac5c8, ~5.13!

since the vacuum state is not affected byVF* .

VI. A SIMPLE MODEL FOR TWO-LEVEL ATOMS
INTERACTING WITH DIELECTRICS

A. An approximate Hamiltonian

In applications the charged particle system often cons
of neutral atoms or molecules with fixed, infinitely heav
nuclei. Here we consider atoms. Let atomn haveNn elec-
trons. We denote bym and 2e the electronic mass an
charge. Then atomn has nuclear chargeNne. Denoting by
Xn its nuclear coordinate andran

the electronic coordinate o

the ath electron in atomn relative toXn , we have

H85H f1~W,p!1 (
n,an

1

2m
@pan

1eA'~Xn1ran
!#21VCoul .

~6.1!

Assumingran
to be small relative toXn , we make the long-

wavelength approximation,A'(Xn1ran
)→A'(Xn). We also

neglect the (A')2 term. This approximation is usually mad
but there are situations, for instance in multiphoton p
cesses, where this is not allowed. In addition we assume
the atoms are well separated, so that we can make the dip
coupling approximation,

z0~x!→ (
n,an

eran
•]x

1

4pux2Xnu
52(

n
dn]x

1

4pux2Xnu
,

W1~x!→2(
n

dn•]x]x

1

4pux2Xnu
5(

n
dn•di~x2Xn!,

~6.2!

where

dn52e(
aN

ran
~6.3!

is the dipole-moment operator for atomn and d i(x)
5^xuepepu0&5(1/4p)$U23exex%(1/uxu3) is the longitudinal
d function. Also,

VCoul→(
n

Vn1
1

2 (
mÞn

Vmn ,
01380
n

ts

-
at
le-

Vmn5dmdn :di~XmÀXn!5dmdn :^XmuepepuXn&, ~6.4!

whereVn is the sum of Coulomb potentials for atomn,

Vn5
1

2 (
anÞbn

e2

4puran
2rbn

u
2(

an

Ne2

4puran
u
, ~6.5!

and, for later reference, we note that

~Vstat!mn→dmdn :^Xmu~Pe!11uXn&

5dmdn :^Xmup@p•«stat~x!p#21puXn&. ~6.6!

Then

H85H f1(
n

Hn1
1

2 (
mÞn

Vmn1~W,p!1~ I ,j!, ~6.7!

where

Hn5(
an

1

2m
pan

2 1Vn ~6.8!

is the Hamiltonian for atomn and

I5S I1

0 D , I1~x!5
e

m (
n

pnd'~x2Xn! ~6.9!

with pn5(an
pan

the total electronic momentum of atomn

and d'(x2y) is the transversed function, d'(x)
5^xuDpu0&. Finally we restrict the field Hamiltonian to th
first two ~vacuum and single photon! Fock layers,

H f→H f
(0)1H f

(1) , ~6.10!

with associated projectorsP(0) and P(1). Since (W,p)
1(I ,j) ladders one layer up and down, we then have, w

uw&5$~W,p!1~ I ,j!%uwvac&, ~6.11!

that

H85H f
(0)1H f

(1)1(
n

Hn1
1

2 (
mÞn

Vmn

1uw&^wvacu1uwvac&^wu

5H f
(0)1H f

(1)1(
n

Hn1V( int)1uw&^wvacu1uwvac&^wu.

~6.12!

Note thatw still contains atomic operators. Additional stru
ture is present in the case of two two-level atomsa and b
with coinciding levels, the ground states~projectorsPa1 and
Pb1) being nondegenerate and excited states~which may be
degenerate! with opposite parity~projectorsPa2 andPb2), as
is the case with atomics andp states. Then the projectors

PE5~Pa1^ Pb21Pa2^ Pb1! ^ P(0)

1~Pa1^ Pb11Pa2^ Pb2! ^ P(1),
4-7
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PF512PE5~Pa1^ Pb11Pa2^ Pb2! ^ P(0)

1~Pa1^ Pb21Pa2^ Pb1! ^ P(1),

~6.13!

commute withH8. Thus, if we consider a situation wit
initial statec5wa2^ wb1^ wvac , we havePFc50 and the
problem reduces to one with HamiltonianHE85H8E in the
corresponding subspace.

B. The multipolar representation

Using the same notation as above we can obtain, star
from the original HamiltonianH, the multipolar representa
tion by applying the unitary Power-Zienau-Woolley transfo
mation @16#

HM P5UHU21, ~6.14!

where

U5exp@2 iG#, G5~P1 ,A!5~P,j!, ~6.15!

with

P5S P1

0 D ,

P1~x!52e(
n,aN

E
0

1

duran
d~x2Xn2uran

!. ~6.16!

Since the calculations closely follow those of the vacu
case, we only state the result, where we made the lo
wavelength and dipole-coupling approximations. Thus, a
skipping magnetic field terms and contact terms,

HM P5H f2(
n

dnE~Xn!1
1

2 (
n

~P1n ,P1n!11 (
n,aN

pan

2

2m
.

~6.17!

Note that skipping the contact terms is consistent with
assumption of well-separated atoms, but is no longer justi
if their wave functions start to overlap. This is often the ca
in actual situations, where atoms are close to sensitiz
large molecules that are needed for the efficient excitatio
atomic states.

VII. DIELECTRICS EXTENDING OVER ALL SPACE

There are situations for dielectrics extending over all
R3, including photonic crystals, whereV6 exist and more-
over

V1150, ~7.1!

in which case

umb15V12umb2
(0) . ~7.2!

Hence in the hatted representation~H.c. denotes the Hermit
ian conjugate!,
01380
ng

g-
o

e
d

e
rs,
of

f

Â'~x!5(
b

E dm~2m!21/2a~umb2
(0) !^xuP'V12umb2

(0) &1H.c.,

p(0)~V* W!5(
b

E dm~m/2!1/2a~umb2
(0) !~W1 ,PiV12umb2

(0) !

1H.c., ~7.3!

which only involve the creation and annihilation operato
for the auxiliary fields. ThusHem

(0) is completely decoupled

from the remainder ofĤ. Setting

p(0)~V* W!5E dxr~x!q~x!

52E dx]x•W1~x!q~x!

5E dxW1~x!•]xq~x!, ~7.4!

we have

]xq~x!5(
b

E dm~m/2!1/2a~umb2
(0) !^xuPiV12umb2

(0) &1H.c.

~7.5!

In Appendix B it is shown how the above expressions can
recast as

Â'~x!52E dyE dl^xuP'Re~l!uy&~l/2!1/2s~y,l!f~y,l!

1H.c.,

]xq~x!5 i E dyE dl^xuPiRe~l!uy&~l/A2!s~y,l!f~y,l!

1H.c., ~7.6!

where

@ f~y,l!,f* ~y8,l8!#5Ud~y2y8!d~l2l8! ~7.7!

and

Re~z!5@z2«~x,z!2h0#21 ~7.8!

In terms of thef’s,

Haux5E dyE dllf* ~y,l!•f~y,l!. ~7.9!

Apart from the termHem
(0) , which is decoupled from the re

mainder ofĤ, the Hamiltonian coincides with the one use
by Dung et al. @6#, since in our cases(y,l)5A2n(y,l),
Im «(y,l)5(p/l)n(y,l) and «05c51. Although the for-
malism of Ref.@6# requires the medium to extend over a
space, these authors could also treat different situations
first assuming a small amount of absorption, then expres
the quantity of interest in terms of the Helmholtz Green
4-8
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function and finally replace the latter by the actual one
the case that certain space regions are nonabsorbing su
vacuum regions. In the following section we show that o
formalism, where no such limiting procedure is require
gives precisely the same result.

VIII. AN EXAMPLE CONCERNING RESONANT ENERGY
TRANSFER

Using the model of Sec. VI we consider two two-lev
atoms a and b with coinciding levels and nondegenera
ground states~labeled 1! embedded in an absorptive diele
tric. Thus

Hn5l1Pn11l2Pn2 ,

Hm
(0)5Ha1Hb52l1Pa1^ Pa21~l11l2!$Pa1^ Pb2

1Pa2^ Pb1%12l2Pa2^ Pb2 . ~8.1!

The eigenstates ofHm
(0) are zeroth approximations (Vab

50) of corresponding states ofHm5Hm
(0)1Vab , where

Vab5V( int). We assume that the states corresponding tol1
1l2 are embedded in the field continuum and coupled to
latter. Then, generically, these states turn into resonan
once the matter-field interaction is turned on. Now radiat
decay becomes possible but also meaningful transition
plitudes between two different eigenstates ofHm , originat-
ing from those ofHm

(0) at l11l2, exist. In fact the first atom
is coupled to a continuum involving the second atom int
acting with the radiation field. TreatingVab as a perturbation
we are then dealing with resonant energy transfer. This c
was studied by Dunget al. @6#. We shall use the primed
representation, reduced to the model of Sec. VI~the same
result follows in the hatted one!.

H85H f
(0)1H f

(1)1Ha1Hb1Vab1uw&^wvacu1uwvac&^wu

5H f
(0)1H f

(1)1Hm
(0)1Vab1uw&^wvacu1uwvac&^wu

5H f
(0)1H f

(1)1Hm
(0)1Vab1Hm f

( int)

5H f
(0)1H f

(1)1Hm
(0)1H ( int)5H (0)1H ( int). ~8.2!

We now consider

^woutuT~z!uw in&,

T~z!5H ( int)1H ( int)@z2H#21H ( int),

w in5wa2
^ wb1

^ wvac ,

wout5wa1
^ wb2

^ wvac ~8.3!

with wa2
^ wb1

andwa1
^ wb2

eigenstates ofHm
(0) at the same

eigenvaluel5la2
1lb1

5la1
1lb2

and z5l1 id, where

eventuallyd is set equal to zero. Thus we consider the tra
fer of the excitation energyv05la2

2la1
.0 from atoma to

atomb. We note thatVab already contributes toT(z) to first
order in a Born expansion, but, since it only connects diff
01380
r
as

r
,

e
es
e

-

-

se

-

-

ent Fock layers,Hm f
( int) starts contributing in the second orde

Thus to leading order in both interactions

T~z!→T(0)~z!5Vab1Hm f
( int)@z2H (0)#21Hm f

( int) , ~8.4!

which is the quantity we shall consider. SinceHm f
( int) maps the

vacuum state into the next Fock layer,

^wvacuT(0)~z!uwvac&5Vab1^wu@z2Hm
(0)2H f

(1)#21uw&.
~8.5!

Now

^wa1
^ wb2

uVabuwa2
^ wb1

&

5^wa1
udAuwa2

&^wb2
udBuwb1

&:di~XA2XB!.

~8.6!

Next we note that, see Eqs.~6.11! and ~4.4!,

uw&5(
b

E dmH iAm

2
~W,umb!1

1

A2m
~ I ,umb!J uumb&.

~8.7!

Observing that H (0)uumb&5(Hm
(0)1m)uumb&5(Hm

(0)

1He
1/2)uumb& and using the orthogonality properties of the s

$umb%, we obtain~for the actual calculation, see Appendix C!

^woutuT~z!uw in&5v0
2^wa1

udAuwa2
&

3^wb2
udBuwb1

&:^XAuRe~v0!uXB&.

~8.8!

This is precisely the expression, Eq.~31!, obtained by Dung
et al. in Ref. @6#, since

^XAuRe~v0!uXB&52G~XA ,XB ,v0!, ~8.9!

with G the Green’s function used by these authors. Note t
our derivation follows a different, maybe somewhat simpl
route. In addition, our expression applies to general abs
tive dielectrics, vacuum regions are allowed,a posteriori
validating the limiting procedure used by Dunget al.

IX. ATOMS IN PHOTONIC CRYSTALS WITH BAND GAPS

In Ref. @11# photonic band gaps for absorptive system
were defined as frequency intervals for which the Four
transformsẼ and B̃ vanish for any initialE(t0) and B(t0).
This definition reduces to the usual one, featuring the lo
density of states, for nonabsorptive situations. In the ab
reference it was shown that photonic crystals cannot h
band gaps in frequency intervals on which Im«(x,v) is non-
vanishing. But ifn(x,v)50 for v contained in a finite in-
terval J, the Kramers-Kronig relations are still obeyed andJ
can contain a band gapD. Let this be the case and consid
Re(v0) for v0PD. Then

^XAuRe~v0!uXB&5^XAu@v0
2«~x,v01 id!2h0#21uXB&,

~9.1!
4-9
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FIG. 1. Spectra of the field Hamiltonian with a band gap~a!, of two two-level atoms with coinciding levelsl1 and l2 ~b! and their
combination~c!. Crosses are eigenvalues, dashed lines continuous spectrum. In~c! only the relevant part of the spectrum is shown.
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where now«(x,v0) is real and in additionRe(z) is analytic
across the real axis for RezPD @11#. Thus we can setd50
in Eq. ~9.1!,

^XAuRe~v0!uXB&5^XAu@v0
2«~x,v0!2h0#21uXB&,

~9.2!

where

Re~v0!5(
b

E
R\D

dm@v0
22m2#21uumb1&^umb1u,

~9.3!

is self-adjoint. Note that now a single atom with nucle
positionX cannot decay radiatively by one-photon emiss
since the decay constant is proportional
Im^XuRe(v0)uX&50 @9#. Note also that band gaps cann
directly be related to gaps in the spectrum ofHe . In fact the
spectrum of this operator does not have gaps. But if we
card its off-diagonal terms, i.e.,

He→He
(0)5S h01x8~0! 0

0 l2D , ~9.4!

then the auxiliary field part completely decouples and d
not contribute toRe(z).

Consider the Drude model with dispersion but no abso
tion, i.e.,«(x,v)512 f (x)(V2/v2). Thenx8(0)5 f (x)V2,
so the eigenvalue equation@v2«(x,v)2h0#f50 can be re-
written as@h01 f (x)V2#f5@h01x8(0)#f5v2f. Numeri-
cal work @10,17# has shown that band gaps can occur in t
situation. Suppose such a band gap is present and let the
be coupled to two atoms with coinciding levelsl1 andl2 as
in Sec. VIII. Without interactions the spectrum consists
the union of 2l1 , l11l2, and 2l2 with the spectrum of the
field Hamiltonian~vacuum eigenvaluelvac50 and pieces of
continuum! and it can happen that in the model of Sec. V
l11l2 is an isolated eigenvalue. Strictly speaking it is co
tinuum embedded but we can use the decomposition give
Sec. VI, cf. Eq.~6.13!, to remove this feature. For a pictur
of this situation, see Fig. 1. Then, generically, the interact
will shift and/or split this eigenvalue but it remains real, i.
it remains a stable state~this changes if multi-photon pro
cesses come into play but the associated decay rates are
completely different magnitude!.
01380
r
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In the general case the analysis is more complicated. C
sidering the model of Sec. VIII again, we study the pert
bation of l i1l j , for instance by determining the corre
sponding pole of@z2H8#21. Then this pole is also a pole o
P@z2H8#21P for some suitable projectorP. Taking P
5Pvac5uwvac&^wvacu and Q512P, we are dealing with
^wvacu@z2H8#21uwvac&, which, by the Feshbach formula
equals

^wvacu@z2H8#21uwvac&

5@z2Hm
(0)2Vab

2^wvacuH ( int)Q@z2QH8Q#21uwvac&#21.

~9.5!

The idea is then to find solutionszj , Pj of

zj Pj5@Hm
(0)1Vab1^wvacuH ( int)Q@z2QH8Q#21uwvac&#Pj ,

~9.6!

by iteration, starting from the unperturbed case

zj Pj5Hm
(0)Pj . ~9.7!

To leading order we can replacê wvacuH ( int)Q@z
2QH8Q#21uwvac& by ^wvacuHm f

( int)Q@z2H (0)#21uwvac&
5^wvacuT(0)(z)uwvac&, with T(0)(z) given by Eq.~8.4!. If
we are only interested inl11l2, we can takeP5P12
^ Pvac , P125Pa1

^ Pb2
1Pa2

^ Pb1
. We can now follow the

pattern of Sec. VIII, except that different matrix elements
^wu@z2H (0)#21uw& are involved. We refrain from presentin
the actual calculations, which are quite lengthy. An essen
point is that the final formula contains matrix elements of t
atomic operator lim

d↓0
$@v1 id2He

1/2#21Qe%11 for v5

6(l11l2), which is self-adjoint. This is trivial for negative
v, whereas forv.0 we have (z5v1 id and the limit for
d↓0 is introduced to remove the contribution from th
eigenspaceQeHe)

@z2He
1/2#21Qe5 lim

«↓0
E

«

`

du2u@z2u#21d~u22He!.

~9.8!

But
4-10
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@d~u22He!#115
1

2p i
$@u22 i02He#

212@u21 i02He#
21%11

5
1

2p i
$Re* ~u!2Re~u!%, ~9.9!

so

@z2He
1/2#21Qe] 115

1

p i
lim
«↓0

E
«

`

duu@z2u#21

3$Re* ~u!2Re~u!%. ~9.10!

Then, if D is a band gap, the integrand vanishes foruPD so
the left-hand side has an analytic continuation acrossD,
which is self-adjoint forvPD. This results in the perturbe
eigenvalues~the original one may split up!, originating from
l11l2, being real ifl11l2 is in a band gap.

If there areN.2 identical atoms the same procedu
leads to the result that if the unperturbed eigenvalueN
21)l11l2 ~one excited atom and the others in their grou
states! lays in a gap then the perturbed eigenvalues rem
real. In this case the excitation energy can be transfe
from one atom to another nonradiatively~Förster transitions!
but not by photon emission and reabsorption, nor can
excited atom decay through photon emission.

X. DISCUSSION

A. Summary

We presented a quantum Hamilton formalism for a syst
of atoms embedded in absorptive dielectrics. Various u
tarily equivalent versions were introduced. In the first ca
Eq. ~4.6!, the presence of the dielectric is encountered in
field Hamiltonian and in the potentials, which depend
«stat rather than the vacuum potentials. In addition the f
vector potentialA is present in the atom-field interactio
term. In the second case, Eq.~4.14!, the field Hamiltonian is
the same but the particles interact through vacuum Coulo
potentials and only the transverse vector potential is pre
in the atom-field interaction term. The part containing
longitudinal component is now replaced by an interact
term containing the longitudinal electric field and the gra
ent of the scalar potential Eq.~4.15!. If suitable wave opera-
tors exist there is a third form~5.12! in which the field
Hamiltonian is simply the vacuum field Hamiltonian. He
all interactions between the atoms and the dielectric
stored in the wave operators. If the dielectric extends ove
space this case reduces to that of Dunget al. @6#. For an
example considered by these authors we verified that t
limiting procedure results in the same expression as obta
here. We then turned to the behavior of a model of exci
atoms in a photonic crystal with transition frequency in
band gap. We found that for a finite number of atoms w
one initially excited and the remainder in their ground stat
radiative decay is inhibited. This result was obtained to le
ing order in the relevant interactions. However, its extens
with the full interaction present seems to be a formida
problem. This is due to the fact that gaps are not a spec
01380
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property of a Hamiltonian but of the projected objectRe(z).
It should be realized that in practice there is always so
absorption present. But in suitable frequency intervals it m
be sufficiently small to be ignored in which case the abo
results are relevant.

B. Transformation of the initial and final states

In the previous sections we performed unitary transform
tions of the Hamiltonian. In general this leads to correspo
ing transformations of the states. But this is not always
case. The situation was considered by Aharonov and Au@18#
for field gauge transformations and some generalizati
thereof. Using their ideas it can be shown~see Appendix D!
that, switching from the primed to the hatted frame,X̂
5VF* X8VF , we have

^woutuX̂uw in&5^woutuX8uw in&, ~10.1!

for w in and wout of the typewm^ w f , where thewm’s are
matter states and thew f ’s eigenstates of

H f
(0)5Hem

(0)1Haux
(0) , ~10.2!

at the same eigenvalue. But this is no longer true for fi
eigenstates at different eigenvalues. The above result
longer holds for the transformation from the original fram
work to the primed or multipolar ones. Indeed, if we calc
late the transition amplitude~8.3! in the original representa
tion of Sec. VIII, using the same states, the result is differe
Indeed, if we start with the object^wm^ wvacuXuwm^ wvac&
in the original representation, then

^wm^ wvacuXuwm^ wvac&5^wm^ UwvacuX8uwm^ Uwvac&,

~10.3!

rather than the quantitŷwm^ wvacuX8uwm^ wvac& that we
considered earlier for specificX8. Now

Uwvac5exp@2 i j~W…#wvac5exp@2 iA~]xz0!#wvac
~10.4!

contains contributions from all Fock layers. This is troub
some since our formalism does not provide a prescription
to which initial or final state should be taken in a speci
framework. On the other hand we left out the mechani
that produces the initial excited atomic state and taking
into account may change the picture. Suppose that an ato
excited by absorbing a photon~another situation is tha
where an electron causes the excitation!. Then the initial
state is the product of the photon state, say a plane wave
frequencyv0, and the atomic ground state~or a product of
atomic ground states if there are more atoms!. The final state
has the same structure so we are dealing with elastic sca
ing of a photon. To leading order the scattering amplitu
contains a direct contribution without excitation of an ato
and indirect ones where an atom is excited, the excita
energy is transferred to a second atom, which then decay
photon emission. In such situations results like Eq.~10.1!
may still hold. But even if this is the case, choosing the st
wm^ wvac is of anad hocnature. More information about th
proper choice of initial and final states might be obtain
4-11
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from a corresponding microscopic approach, starting from
interacting~second! quantized matter-field system with min
mal coupling. But, as far as the author is aware, such a
malism is not available for general spatially inhomogene
situations. This matter, especially if embedded atoms
present, needs further investigation.

C. Outlook

It sometimes happens that absorption can be neglecte
a certain frequency interval but that dispersion has to
taken into account. This raises the question if such a dis
sive system can directly be quantized. This is indeed the c
for the Drude-Lorentz model as we intend to discuss on
other occasion. A related subject is a perturbative appro
for small absorption situations. Some results have been
tained for the Drude model@19# and more general cases a
under investigation.

ACKNOWLEDGMENTS

Discussions with A. Polman, L. Slooff, S. Scheel,
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APPENDIX A: THE WAVE OPERATORS

The wave operators

V65 lim
t→6`

V~ t !5 lim
t→6`

exp@ iHet#exp@2 iH0t#Q(0),

He5H01V, ~A1!

acting inH, were discussed to some extent in Refs.@9# and
@15#. If they exist and are complete, we have the propert

He5V6H0V6* , V6V6* 5Qe , V6* V65Q(0). ~A2!

In particular the~absolutely! continuous spectra ofHe and
H(0) then coincide. Differentiation and integration ofV(t)
gives

V65Q(0)1 i E
0

6`

dt exp@ iHt#Vexp@2 iH0t#Q(0) ~A3!

and existence follows if

E
2`

1`

dtiVexp@2 iH0t#fi,` ~A4!

for a dense setfPQ(0)H. Note that h0•f15p2f1 for f
PQ(0)H. Then, if x8(x,0) ands(x,l) vanish forx outside
some finite region~or have sufficiently fast decay! the norms
ix8(x,0)exp@2ip2t#f1i1 and iuls(x,l)&exp@2ip2t#f1i2
have the required time-decay property, where
i^ls(x,l)uexp@2il2t#f2i2 can be handled by a method us
for rank one perturbations@20#. But if the medium extends
01380
n

r-
s
re

in
e
r-
se
-

ch
b-

r

r

s

s

over all space this proof breaks down. Nevertheless it
happen that even then theV ’s exist and that actually
P1VP15V1150. We have the following.

Proposition. Suppose that«(x,z) has the properties

Im «~x,z!>c1.0 ;xPA,

v5uRezuP@v1 ,v2#, h5Im zP@0,h0#,

u«~x,z!u,c2,`,

lim
uvu→`

«~x,z!51, z5v1 ih, hP@0,h0#,

u«stat~x!u>c3.0,

u«~x,z!2«stat~x!u<c4uzu, uzu sufficiently small,

0<c4,`,

uz2x̂~x,z!u<c5,`, ~A5!

whereA is eitherR3 or the volume occupied by the absor
tive material in the union of the unit cells of a photon
crystal.@v1 ,v2#, 0,v1,v2,`, is an arbitrary finite inter-
val andh0.0, which can be taken arbitrarily small. The
with P1

' the projector uponP'H1, we have for allfPH,

lim
t→`

P1exp@ iHet#P1
'f50. ~A6!

This result is physically reasonable since it states that
large times the electric field dies out as is to be expecte
an infinite absorptive medium. We omit the rather lengt
proof. The basic idea is to express Eq.~A6! in terms of the
Laplace transform (Imz.0)

P1@z22He#
21P15@z2«~x,z!2h0#21P15Re~z!P1 .

~A7!

For photonic crystals it is known@11# that, except forz
50, Re(z) is analytic across the real axis with singulariti
forming islands in the lower half plane away from the re
axis ~this was confirmed numerically for a two-dimension
case in Ref.@21#!. From this the proposition immediatel
follows.

APPENDIX B: RELATIONS USED IN SEC. VII

We write, using the spectral decomposition ofH (0),

H (0)5E mE(0)~dm!,

Ej
(0)~dm!5(

b
dmuumb j

(0) &^umb j
(0) u, ~B1!

P1Vf5 lim
d↓0

idE Re~z!P1E(0)~dm!f1 lim
d↓0

E Re~z!

3S 0 ^lsu

0 0 DE(0)~dm!f, ~B2!

or
4-12
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~Vf!15 lim
d↓0

idE Re~z!E1
(0)~dm!f11 lim

d↓0
E Re~z!

3^lsuE2
(0)~dm!f2 . ~B3!

Provided

lim
d↓0

idE Re~z!E1
(0)~dm!f150 ~B4!

~true if the above proposition holds!, then

~Vf!15V12f25E Re~m!^lsuE2
(0)~dm!f2 , ~B5!

i.e., V1150. For f25umb2
(0) we have

^xuV12uumb2
(0) &5E dyE dl^xuRe~m!uy&ls~y,l!umb2

(0) ~y,l!.

~B6!

In Sec. VII we encountered

Â'~x!5(
b

E dm~2m!21/2a~umb2
(0) !^xuP'V12umb2

(0) &1H.c.,

]xq~x!52 i(
b

E dm~m/2!1/2a~umb2
(0) !^xuPiV12umb2

(0) &1H.c.

~B7!

With X is an arbitrary operator onH1,

(
b

E dmg~m!a~umb2
(0) !^xuXV12umb2

(0) &

5(
b

E dmg~m!E dyE dla~umb2
(0) !

3^xuXRe~m!uy&ls~y,l!umb2
(0) ~y,l!. ~B8!
01380
Sincel2umb2
(0) (y,l)5m2umb2

(0) (y,l), umb2
(0) (y,l) vanishes un-

lessm5l, so

(
b

E dmg~m!a~umb2
(0) !^xuXV12umb2

(0) &

3E dyE dl^xuXRe~l!uy&lg~l!s~y,l!

3(
b

E dm^y,luumb2
(0) &a~umb2

(0) !

52E dyE dl^xuXRe~l!uy&lg~l!s~y,l!f~y,l!,

~B9!

where

f~y,l!52(
b

E dmumb2
(0) ~y,l!a~umb2

(0) !, ~B10!

and its adjoint satisfy the commutation relation

@ f~y,l!,f* ~y8,l8!#5Ud~y2y8!d~l2l8!. ~B11!

Thus

Â'~x!52E dyE dl^xuP'Re~l!uy&

3~l/2!1/2s~y,l!f~y,l!1H.c.,

]xû~x!5 i E dyE dl^xuPiRe~l!uy&

3l~l/2!1/2s~y,l!f~y,l!1H.c., ~B12!

and also

Haux5E dyE dllf* ~y,l!•f~y,l!. ~B13!
APPENDIX C: CALCULATION OF EQ. „8.8…

Using Eq.~8.7! we obtain

^wu@z2H (0)#21uw&5(
b

E dmH 2 iAm

2
~umb ,W!1

1

A2m
~umb ,I !J @z2Hm

(0)2m#21H iAm

2
~W,umb!1

1

A2m
~ I ,umb!J

5
1

2 (
b

E dm$~umb ,W!m@z2Hm
(0)2m#21~W,umb!1~umb ,I !m21@z2Hm

(0)2m#21~ I ,umb!

1~umb ,W!@z2Hm
(0)2m#21~W,umb!1~umb ,I !@z2Hm

(0)2m#21~W,umb!%

5
1

2
$^WuHe

1/2@z2Hm
(0)2He

1/2#21QeuW&1^I uHe
21/2@z2Hm

(0)2He
1/2#21QeuI &2 i ^Wu@z2Hm

(0)2He
1/2#21

3QeuI &1 i ^I u@z2Hm
(0)2He

1/2#21QeuW&%

52
1

2
^WuQeuW&1(

j 51

4

Xj52VCoul1Vstat1(
j 51

4

Xj . ~C1!

Since2^wa1
^ wb2

uVCouluwa2
^ wb1

&52^wa1
^ wb2

uVabuwa2
^ wb1

&, this term cancels Eq.~8.6!. For X1 we obtain~terms con-

taining da or db twice vanish due to the orthogonality ofwb2
andwb1

, respectively,wa1
andwa2

)
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^wa1
^ wb2

uX1uwa2
^ wb1

&5
1

2
^wa1

^ wb2
uda•~@z2Hm

(0)#^XauPi~@z2Hm
(0)2He

1/2#21Qe!11P
iuXb&dbuwa2

^ wb1
&

1
1

2
^wa1

^ wb2
udb•~@z2Hm

(0)#^XbuPi~@z2Hm
(0)2He

1/2#21Qe!11P
iuXa&dauwa2

^ wb1
&

5
1

2
^wa1

udauwa2
&•~2v01 id!^XauPi~@2v01 id2He

1/2#21Qe!11P
iuXb&^wb2

udbuwb1
&

1
1

2
^wb2

udbuwb1
&•~v01 id!^XbuPi~@v01 id2He

1/2#21Qe!11P
iuXa&^wa1

udauwa2
&. ~C2!

Using

^XbuPi~@z2He
1/2#21Qe!11P

iuXa&5^XauPi~@z2He
1/2Qe#

21!11P
iuXb&, ~C3!

this simplifies into

^wa1
^ wb2

uX1uwa2
^ wb1

&

5
1

2
^wa1

udauwa2
&^wb2

udbuwb1
&:^XauPi$~2v01 id!@2v01 id2He

1/2#21Qe1~v01 id!@v01 id2He
1/2#21Qe%11P

iuXb&.

~C4!

But, observing thatv0.0 andH e
1/2.0 and denoting a principal value byP,

~2v01 id!@2v01 id2Hm
(0)2He

1/2#21Qe1~v01 id!@v01 id2He
1/2#21Qe

5v0$@v02 id1He
1/2#21Qe1@v01 id2He

1/2#21Qe%

5v0H P 1

v01He
1/2

1 ipd~v01He
1/2!1P 1

v02He
1/2

2 ipd~v02He
1/2!J Qe

5H 2v0
2P 1

v0
22He

2 ipv0d~v02He
1/2!J Qe

5H 2v0
2P 1

v0
22He

2 ipv0~v01He
1/2!d~v0

22He!J Qe

52v0
2H P 1

v0
22He

2 ipd~v0
22He!J Qe

52v0
2@v0

21 id2He#
21Qe522Pe12v0

2@v0
21 id2He#

21. ~C5!
in a
Recalling that

~@v0
21 id2He#

21!115@v0
2«~x,v0!2h0#215Re~v0!,

~C6!

we obtain

^wa1
^ wb2

uX1uwa2
^ wb1

&

5v0
2^wa1

udauwa2
&^wb2

udbuwb1
&:^XauPiRe~v0!PiuXb&

2^wa1
udauwa2

&^wb2
udbuwb1

&:^Xau~Pe!11uXb&
01380
5v0
2^wa1

udauwa2
&^wb2

udbuwb1
&:^XauPiRe~v0!PiuXb&

2^wa1
^ wb2

uVstatuwa2
^ wb1

&. ~C7!

We see that the contribution to Eq.~B14! from the static
potential is cancelled. The other terms can be handled
similar way with the result

^woutuT~z!uw in&5v0
2^wa1

udAuwa2
&

3^wb2
udBuwb1

&:^XAuRe~v0!uXB&.

~C8!
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APPENDIX D: THE AHARONOV-AU INVARIANCE
PRINCIPLE

Consider a quantity

F5^woutuXuw in&, ~D1!

on a Hilbert spaceH, wherew in andwout are eigenstates o
a self-adjoint operatorH0 at the same eigenvalueE, H0w in
5Ew in , H0wout5Ewout . Then, if U5exp@iF# is a unitary
operator,

F5^ŵoutuX̂uŵ in&, X̂5X̂~U !5UXU21, ŵ j5Uw j .
~D2!

But we can also write

F5^woutuexp@2 iH 0t#X̂~U !exp@ iH 0t#uw in&

5^woutuX̂@U~ t !#uw in&,

U~ t !5exp@2 iH 0t#Uexp@ iH 0t#. ~D3!

Now, suppose that

X̂@U~ t !# →
t→`

X̂~1!5X. ~D4!
-

.

01380
This is the case if, forf PH, U(t) f→ t→` f , or F(t) f
5exp@2iH0t#Fexp@iH0t#f→t→`0. Then

F5^woutuX̂uw in&, ~D5!

i.e., the original statesw in and wout give the same result in
both representations. Note that we cannot directly cons
U(t)w j , since in general thew j ’s are not inH ~for example,
plane-wave states in scattering processes!. A typical case is a
transition amplitudeF5^woutuT(E1 i0)uw in&. Now consider
the switch from the primed system to the hatted one. Th
U5VF* and

exp@2 iH f
(0)t#VF* exp@ iH f

(0)t#

5VF* exp@2 iH f t#exp@ iH f
(0)t# →

t→`

VF* VF51.

~D6!

Thus, if w in andwout are products of matter states and fie
states with the field states being eigenstates ofH f

(0) at the
same eigenvalue, then

^woutuX̂uw in&5^woutuX8uw in&, ~D7!

hence extending Eq.~5.13!.
-
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@13# L. Knöll, S. Scheel, and D.-G. Welsch, inCoherence and Sta

tistics of Photons and Atoms, edited by J. Per˜ina ~Wiley, New
York, 2001!.

@14# A. Tip, Phys. Rev. A56, 5022~1997!.
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